# Лекция 9 Зарядка микрочастиц в пылевой плазме

Краткая презентация

#### Цель

- Описать процессы зарядки пылевых частиц в плазме.
- Рассмотреть Maxwell и к-распределения.
- Вывести потоки электронов и ионов и стационарный заряд.

#### Пылевая плазма в космосе

- Большая часть космической плазмы содержит пыль.
- Пыль ~1% массы газа в межзвёздной среде.
- Примеры: миссии Stardust, LADEE, эксперименты на МКС.

#### Нерановесность и к-распределение

- Многие плазмы имеют степенной хвост в распределении.
- к-распределение лучше описывает высокоэнергетические частицы.
- Применение: пыле-акустические солитоны и др.

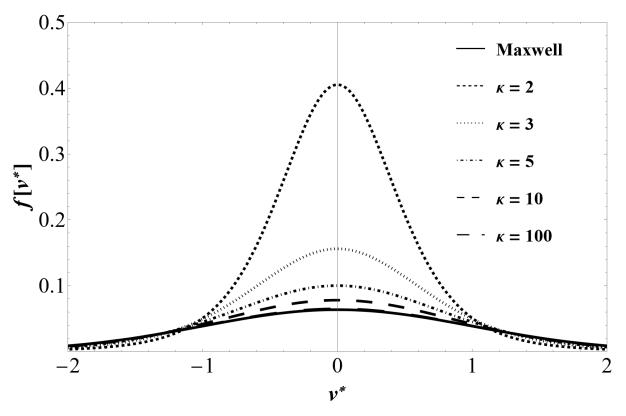



Рисунок 9.1 – Максвелловское и к - распределения при разных значениях к

#### Зарядка пылинок

- Размеры: доли несколько микрон.
- Могут заряжаться отрицательно/положительно.
- Основные процессы: токи электронов и ионов, эмиссия.
- Используется модель OML (ограниченное орбитальное движение).

## Условия применимости OML

- Радиус частицы а << λ\_D, λ\_mfp.</li>
- Другие частицы не искажают траектории электронов/ионов.
- Поглощение происходит при касании поверхности частицы.

#### Потоки электронов и ионов

- Потоки получаются интегрированием сечения по распределению.
- Используются распределения Максвелла и к-распределения.
- Стационарный заряд определяется равенством потоков.

### Безразмерные параметры

- Приведённый заряд  $\tilde{Z} = |Q|/(4\pi\epsilon_0 akT_e)$ .
- Отношения температур τ = T\_e/T\_i.
- Отношения масс μ = m\_i/m\_e.
- Параметр Хавнеса H роль пылевой компоненты.

#### Влияние параметра к

- При к  $\rightarrow \infty \rightarrow$  Максвелл.
- Меньшие к → сильнее хвост → изменённые потоки.
- Меняется стационарный заряд пылинки.

### Влияние концентрации пыли

- Пылевые частицы влияют на квазинейтральность.
- Рост Н снижает заряд по абсолютной величине.
- Для  $H \to 0 \to$  заряд уединённой частицы.

#### Основные результаты

- Получены потоки электронов/ионов для краспределения.
- Определён приведённый заряд пылевых частиц.
- Показано влияние к, τ, μ и Н на заряд.
- Построены зависимости заряда и потоков.

### Литература

- Goertz (1989); Fortov et al. (2004).
- Hellberg et al. (2009); Baluku & Hellberg (2012).
- Havnes (1987); Goree (1994).